
Contact: Christoph Wiesmeier, c.wiesmeier@student.tugraz.at

Playing Super Hexagon using Computer Vision

Dipl.-Ing. Christoph Wiesmeier BSc

Institute of Computer Graphics and Vision

Graz University of Technology, Austria

Seminar Paper
Advisor: Dipl.-Ing. Dominik Narnhofer BSc

Supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Thomas Pock
Graz, April 1, 2021

mailto:c.wiesmeier@student.tugraz.at

Abstract

The introduction and advances in CNNs have enabled reinforcement learning to be a
viable option for computer vision. In this work we use a computer game as a substitute
for a real world-system. The game is played from pixel values and runs without time
synchronization. We compare a simple traditional computer vision implementation,
with a supervised learning system, on our reinforcement learning system. Additionally
we study the influence of image preprocessing to our learning-based systems. Finally
we show how our SARSA based reinforcement implementation achieved superhuman
performance in the game Super Hexagon

Keywords: Technical report, ICG, Reinforcement Learning, SARSA, CNN

1 Introduction

Computers are capable of solving more and more tasks. But are they able to play completely
unmodified computer games, and how hard is it to implement such a system? To answer this
question we decided to implement three different algorithms to play the game SuperHexagon. A
traditional computer vision, a supervised learning and a reinforcement learning approach. All of
them play an unmodified computer game which we consider a substitute for a real-world system.
As we don’t synchronize the execution speed of the game to our algorithm, the resulting system
is comparable to a camera capturing a real world system and the computer moving some leaver.
This is in contrast to most current reinforcement systems like ([2][5]) where the environment
does not have any state transitions while the algorithm is planing its next steps.

In Section 2 we will discuss the similarities and differences to some related works. This
then leads us to Section 3 where we will explain the game choice. In Section 4 we will discuss
our software framework and associated tools. At the end of this section we then introduce
our preprocessing pipeline of which we will use parts for all our implementations. Section 5
introduces our Traditional Computer Vision (TCV) implementation which provides us with
baseline results. After discussing the benefits and limitations of this approach we will move
towards learning based solutions. A supervised system is introduced in Section 6. We evaluate
the supervised system to get a good starting point for our final approach. In Section 7 we
introduce our reinforcement learning system. We discuss our implementation of State Action
Reward State Action (SARSA) and evaluate the results. Finally we will compare the results of
the different approaches in Section 8

2 Related Work

In recent years a lot of work was done in the field of reinforcement learning. The most common
introduction in this field is from Barto and Sutton [12]. It provides the de facto standard for
basics, notation and problem formalization in reinforcement learning.

With the introduction of Convolutional Neural Networks (CNNs) as a function approxima-
tion in reinforcement learning, it becomes possible to run the algorithms on pixel images. A
very popular task in this area is playing pong from pixels with a lot of implementations like
[8],[9],[10]. Pong is one of many Atari games which are used regularly to develop and compare
vision-based reinforcement systems. These Atari games are provided as part of OpenAIs Gym
[2] toolkit. Challenges like ViZDoom [5] extend this to the area of 3D games. Hafner [3] shows
some successes in ViZDoom but struggles to provide the amount of training required for high
quality results.

All approaches, mentioned so far, synchronize the game’s execution speed to the reinforce-
ment agent. Ramstedt and Pal [11] analyze the differences of these synchronized systems with
real-time systems. A system called Reactive Reinforcement Learning is proposed by [13]. This
approach reorders some tasks to reduce latency, where our implementation parallelizes them.

We tried at some point to preload the replay buffer with existing data to improve the initial
performance. We stopped our investigations as the initial results were not promising and the
task was outside of our focus. More sophisticated approaches to pre-training with promising
results are discussed in Hester et al.[4].

Furthermore there are optimizations and other algorithms which we did not implement but
they could be interesting for similar tasks. The implementation of a Dueling Q-Network [14]
could improve the stability of your system. There is a trend towards Policy Gradient and Actor
Critic methods [12],[7] which could be an alternative to replace our SARSA algorithm.

1

3 The Game

For this work we let the computer play Super Hexagon 1. In this game the player, a small triangle,
can rotate around the center of the screen. From the outside hexagons are shrinking, moving
towards the center. These hexagons have some open sides. The player has to move around the
center to avoid a collision with the hexagon’s closed sides. The view on the game-field is rotating
as well as mild perspective transformations distort the view. An example screenshot can be seen
in Figure 1. Using the left and right arrow keys the player tries to survive as long as possible.
The main challenge for a human player is the game’s speed.

We have chosen this game because of its simplicity. The objective is clearly defined as
maximizing the survival time. The game rounds are quite short. A human player usually
achieves records of around 5 to 8 seconds during the first games. After a few hours of playing,
records of about 60 to 70 seconds are typical. Furthermore the simple graphic allows to analyze
the frames in real-time with a reasonable amount of processing power.

Figure 1: Example image of the game Super Hexagon.

4 Framework

To allow the computer to play a game, more than just the control algorithm is needed. In this
section we will explain the basics of additionally required framework.

SuperHexagon, like most computer games, is designed to be played by humans. Because
we want to control the game by a program, we have to create an Application Programming
Interface (API) around it (Wrap the Game). Further we need to navigate through the menus of
the game and detect when we have lost. To store and inspect the game rounds we also need a
recording format and a viewer. Finally we implement an image preprocessing which simplifies
the work of the control algorithms.

4.1 Wrapping the Game

To allow interaction with the game we built a wrapper class. Its main purpose is to start and
stop the game and give access to the game’s inputs and outputs. Because the game is started as
a normal window application with no control over its execution speed, implementing a standard
interface like GYM[2] is not possible.

The Linux version of Super Hexagon is based on the Steam platform. By creating a
”steam appid.txt” file the game can be started directly. This simplifies getting the process
ID and also allows starting more than one instance at the same time.

1https://superhexagon.com/

2

https://superhexagon.com/

Figure 2: Template example used to detect failed games. The background is marked as trans-
parent and ignored during matching.

The video output of the game is captured using screen grabbing. Therefore we locate the
window using its Process ID and grab the image using the library MSS 2. This approach only
works for visible windows. There are applications like Firefox which also are capable of grabbing
background applications, but we could not find a Python library with this option. Against our
initial approach of using the game in Full-Screen mode we switched over to window mode. This
reduces the image resolution and as a consequence the required processing power.

Initially the input emulation was done by using PyUserInput 3 but later we switched to
PyXdo 4. This limited our application to Linux systems with X-Server but allows sending
the inputs to a specific process rather than the current window with focus. This is a major
improvement as now we can run multiple game instances at once and also other applications
can still be used on the same PC.

We also shortly investigated the option of using a virtual machine to run the game. From
performance perspective it looks possible, but decided against it to avoid unnecessary complexity.

4.2 Game Logic

We need to implement a basic game logic to be able to start a game and understand when
the game-episode is lost. Since we only have the visual output of the game we extract the
information from the images. This is done by a simple template matching. The templates
use transparency to mask out image regions. An example template can be seen in Figure 2.
The matching between the image s and the template t is defined in Equation 1-3. There are
templates for StartScren, Death, Failed Menu and Difficulty Selection. The template matching
happens directly after the screen grabbing. The matched template is added as an annotation
to the frame when sent for processing. For performance reasons the template matching is only
done at 1/4 of the resolution.

s ∈ N768×480×3 , t ∈ N192×120×4 , x ∈ N |x < 192 , y ∈ N | y < 120 (1)

diff(x, y) =

 max
c={0,1,2}

(abs(s[x ∗ 4, y ∗ 4, c]− t[x, y, c]), if t[x, y, 3] 6= 0

0, otherwise
(2)

match :
1

count
∀(x,y)

(t[x, y, 3] 6= 0)

∑
∀(x,y)

diff(x, y) < 55 (3)

2https://github.com/BoboTiG/python-mss
3https://github.com/SavinaRoja/PyUserInput/wiki/Installation
4https://github.com/rshk/python-libxdo

3

https://github.com/BoboTiG/python-mss
https://github.com/SavinaRoja/PyUserInput/wiki/Installation
https://github.com/rshk/python-libxdo

The game logic automatically starts the game as required by the current task. The im-
plemented game logic is developed with robustness in mind and needs to be able to recover
from different states. Sometimes the game does not react immediately to inputs. This is most
probably a result of timing issues.

While a game is running, the frames are forwarded to a player object, which analyzes the
images and selects a move. This player object can be a Human Player or an algorithm like a
reinforcement agent.

4.3 Recording

All grabbed game frames and their annotations like the matched template or the decision of the
player are recorded. There are two types of recordings created. The debug-recording containing
all frames, including menus, is used for development. The per-game-round-recording which only
contains the frames of one round is used for evaluations and to building data-sets for learning
systems.

The recordings are HDF5 5 files. Each frame is stored as a HDF5 data-set object. These
objects contain the PNG compressed images as data and the collected annotations as attributes.
The PNG compression is done on the fly in a thread pool to avoid performance loss in the main
execution path while still keeping memory consumption low. The recording takes on average
23kB/frame. This typically results in around 10MB per game, largely deepening on the play-
time.

4.4 Recording Analyzer

To understand which decisions our algorithms have taken and why, we need a way to inspect
the recordings and check the behavior of new algorithms. This we achieve with our recording
analyzer (Figure 3). It loads a recording and allows seeking to an arbitrary position. So we can
inspect the attributes, export images, or even debug the TCV algorithm on the current frame
using Pythons debugger.

Figure 3: Screenshot of the recording analyzer.

5https://www.hdfgroup.org/solutions/hdf5

4

https://www.hdfgroup.org/solutions/hdf5

4.5 Preprocessing

The image contains more information than necessary to play the game. During preprocessing
we remove unnecessary information, like color, and try to optimize the representation for our
control algorithms. The TCV algorithm requires all preprocessing steps. The learning-based
implementations also uses parts of the processing pipeline.

The first preprocessing step is gray-scaling. Color information is not necessary to play the
game. Reducing the image to only one channel simplifies further processing. The conversion is
done by transforming into Hue Saturation Value (HSV) and then only using the Value channel.
The result is visible in Figure 4b. This preprocessing step is referred to as gray in the later
algorithms.

The second step is transforming the image to polar coordinates. This gives us position and
a distance as coordinates, which are simpler to handle. As can be seen in Figure 4c this also
removes the menus but it loses a significant portion of the image. This preprocessing step is
referred as rad in later algorithms.

The next step is centering the player. This is done by first stacking two rad images (Fig-
ure 4d). Next the player is searched using OpenCV’s[1] blob detector (Detections are shown
as red circles in Figure 4e). The detections are filtered based on their distance on the X-Axis.
From remaining detections the point nearest to the center of the Y-Axis is selected. Finally the
image is cropped with the selected blob in the vertical center (Figure 4f). This preprocessing
step is referred as radStab in later algorithms.

5

(a) Input image
(b) Grayscaled imput image,

refered as gray

(c) Image in polar cordinates,
refered as rad

(d) Stacked ploar image

(e) Image with detected blobs

(f) Final cropped image
refered as radStab

Figure 4: Overview of different preprocessing steps.

6

5 Traditional Computer Vision

The first implementation of an artificial agent for playing the game is a non-learning based one.
It is heavily based on the preprocessing pipeline and adds some additional steps.

The radStab image (Figure 4f) is thresholded by 60% from its maximum value. A collision
with objects to the left of the player is not longer possible. Therefore the image is cut on the
player’s vertical position with a small additional margin (xCut). If the margin is big enough the
player is not longer on the image and can’t be detected as an obstacle. Finally the most right
column is set to a non-zero value to make sure each line has an object. The result is shown in
Figure 5a.

We define the index ia for the angular dimension and the index id for the distance dimension.
By applying the argmax (index of the maximum) the obstacle distance dinit(ia) is calculated
for each possible player position (Equation 6, Figure 5b top left). A weighting function w(ia) is
defined acording to Equation 7 (Figure 5b bottom left). The weighting is subtracted form the
distances resulting in the weighted distance dw(ia) (Equation 9). This dw(ia) gives priority to
the nearest option, which has a high distance (Figure 5b top right). The corners of the objects
have always the highest distance of this object. This would lead to target solutions directly on
edge of a collision. To give priority to the center of the gap, the distances dw are filtered with a
gaussian distribution h(x). The final dinstance signal d(ia) (Equation: 10) is show in (Figure 5b
bottom right).

The target position is now the position with the largest free distance. Depending on the
target position the command (CMD) Left, Right or Straight/Neutral direction is selected. For
Straight there is a small dead-zone around the center where, the non-optimal position is accepted.
This avoids unnecessary moves, which sometimes lead to accidental collisions on low frame rates.

ia ∈N | ia ≤ Ia, Ia = 480 , id ∈ N | id ≤ Id | Id ∈ Z, Id ≤ 768 (4)

img ∈NId×Ia | img ≤ 255 (5)

dinit(ia) =argmax
id

(img) (6)

w(ia) =− (abs(ia − Ia/2)− Ia/2) ∗ ca | ca ∈ R+ (7)

h(x) =
1

σ
√

2π
e−

x2

2σ2 |x ∈ Z (8)

dw(ia) =dinit − w (9)

d(ia) =dw ∗ h (10)

CMD =

”L”, argmax

ia

(d) < Ia/2− 25

”R”, argmax
ia

(d) > Ia/2 + 25

”N”, otherwise

(11)

The system has a lot of parameters which need to be adjusted. For three of them we
performed a parameter search. XCut is the number of pixels removed to the right of the player
after thresholding. Center adjust(ca) is a gain factor for our distance weighting. Gaussian (σ)
is the standard deviation of the gaussian filter on the final distance function. In Figure 6 we
run each configuration for 100 rounds and then compare the results. For Center adjust(ca) and
Gaussian (σ) we see a sweet spot of the parameters. For xCut there is no clear trend, we only
see 200px is too much. Based on our tests we finally choose gaussian=10, center adjust=0.6,
xCut=70. We tired to avoid further tests in this area as they are very time intensive. Creating
Figure 6 requires playing 2200 game rounds, with about 20 seconds each, and therefore it takes
approximately 12 hours.

7

(a) Cropped and thresholded image.
Rotated 90◦ for Illustration.

(b) TL: Callculated distances, TR: combined,
BL: Distance weigthing, BR: Gaussian filtered

Figure 5: Processing steps of the TCV algorithm.

Figure 6: Variation of parameters of the TCV algorithms. Each configuration was tested for
100 rounds.

8

5.1 Results

For evaluation of our TCV implementation we compare it with a random policy and a human.
The random policy is the ε-greedy policy from the reinforcement algorithm with ε = 1. We
run each implementation for 100 rounds and compare their playtime. The result can be seen in
Figure 7 and Table 1. The average performance of our TCV algorithm is slightly better than
the human reference, but the difference is not very significant.

Min Mean Median Max

Random 0.6 2.1 1.4 13.9
Human 2.1 23.1 22.6 64.1
TCV 2.4 24.4 23.5 60.2

Table 1: Results of 100 rounds of different algorithms.

Beyond the systematic limitations of the algorithm, which we will discuss in the next section,
we noticed a significant influence of the frame-rate on the performance. For execution speeds
below 25 frames per second (fps) we noticed a significant reduction in achieved performance.
A large factor for this reduction is an unavoidable lag when using an external system. The
state of the system changes during the processing time. The selected action is sent to the game
approximately at the same time as the next frame is captured. Additionally the game also has
a reaction time. To illustrate this, if action an is a result of processing frame n, we observe the
corresponding change only in frame n+ 2 or n+ 3.

0 10 20 30 40 50 60 70
Playtime in sec

Human

Random

TCV

Figure 7: Overview of the distribution of playtimes over 100 rounds per algorithm as a violin
plot stacket on a boxplot.

5.2 Common Errors

The implementation makes some systematic mistakes. It always tries to get to the best position
on the shortest path. It does not perform any checks if this path is actually possible or may
lead to a collision. Figure 8 shows examples where taking the direct path resulted in a collision.

To overcome the issue in example 1a, a path-finding algorithm would work. This is com-
putationally difficult and could significantly reduce the frame-rate of the system. To also solve
example 2 the movement speed needs to be considered. Unfortunately the speed of the approach-
ing objects changes during the game which makes this difficult. A simple speed estimation and
collision avoidance was tested during the development. Unfortunately it never worked reliably.

The approach of tracking down possible movement paths or even a low-resolution path-
finding would still be quite promising. A significant challenge could be achieving a good perfor-
mance especially while implementing it in Python.

9

(a) Input Image (Example 1) (b) Input Image (Example 2)

(c) Sabilized Image (Example 1) (d) Sabilized Image (Example 2)

(e) Distances (Example 1)
(f) Distances (Example 2)

Figure 8: In Example 1 the algorithm detected the optimal position to be on the lower end of
the image. The shortest move would be down. The objects in between are not considered by
the algorithm.
In Example 2 an upward position would have a slightly higher distance. The player is moved
upwards but can’t reach its target position before it hits an object.

10

6 Supervised Learning

The TCV implementation needs a lot of tuning. Also handling each systematic error is a lot of
effort. Therefore we next evaluate the option of supervised learning. For us supervised learning
is mostly as a precursor for reinforcement learning, but it also can be an option to learn from
expert players, which by far exceed the typical human performance.

Our supervised learning system is implemented using Tensorflow/Keras. It is trained using
data from a human player, the TCV implementation, or a combination of both. The data-sets
are shown in Table 2.

We treat the task of playing the game as an image classification problem. The input is a
prepocessed screen image, the output is one of three possible actions. The input preprocessing
can be gray scaling Figure 4b (gray), polar transformation Figure 4c (rad), or image stabilization
Figure 4f (radStab). A CNN is used as a function approximation (f(xi)) and convertes the input
image (xi) into one hot encoded output (yi).

f(xi)− > yi |0 ≤ xi ∈ R192×120×1 ≤ 1, yi ∈ R3 (12)

Initially we considered using a single output to map the options to left = −1, straight = 0,
right = 1. This was dropped during initial testing, as there are many situations where it does
not matter, if left or right is chosen, but the neutral command would lead to a collision.

For all CNNs a dropout regularization is used for the fully connected layers. A probability
of 0.2 is used for all hidden layers and 0.05 for the output layer. The convolutional layers are
not regularized, as they are less likely to overfit. For training we minimize the Cross Entropy
Loss (CEL) using Adam [6].

Equation 13 defines the CEL(i) for each sample i as baed on the one hot encoded target
label y∗i and the CNN output f(xi). We typically use Mean(CEL) which shows the average
overall N samples of an epoch. Figure 9 shows the Mean(CEL) and mean classification error
(mean(E)) during training. The evaluation on the dev-/test-set is performed on each fifth epoch.
The loss indicates slight overfitting, but the classification error shows no significant issue. We
use 50 epochs to allow a convergence for different network architectures without tuning the
hyperparameters for each configuration.

CEL(i) = −
3∑

c=0

y∗i log(f(xi)) | f(xi), yi ∈ RC=3 (13)

mean(CEL) =
1

N

N∑
i=0

CEL(i) (14)

mean(E) =
1

N

N∑
i=0

1 , if argmax
c

(ti) 6= argmax
c

(y∗i)

0, otherwise
(15)

6.1 Evaluation

We train the algorithm on different data-sets shown in Table 2. The Human A data-set was
created at the beginning of our work. It contains a few long game sessions and it is not split
into rounds. The Human100 data-set was initially created as a performance reference for all
algorithms and consists of 100 game-rounds played by a human. Similar the TCV100 data-set
contains the recordings from the evaluation of our TCV algorithm. ”Both” simply combines
the last two, to create a more diverse data-set. For ”All” we simply used all recordings we had
available. Each data-set is randomly split into 90% training data and 10% development data.

11

Figure 9: Exampe of the training loss and error for one trained configuration.

Name Info Nr. Training Samples Nr Dev Dev samples

Human A About 1.5h Human Play 22752 2527
Human100 100 rounds Human 18481 2053
TCV100 100 rounds PC 20418 2268
Both Human100 ∪ TCV100 38898 4322
All All above + ≈ 500TCV Games 161232 17914

Table 2: Data sets used for supervised training.

We also tested different neural network architectures, shown in Table 3. The simplest archi-
tecture is logistic regression. By adding additional layers, with 128 neurons per layer, we created
fully connected networks with 1, 3, and 5 hidden layers. We then create convolutional networks
always containing the same number of convolutional and fully-connected layers. The parameter
count is decreased for Conf2FC2 and Conf3FC3, because the reduction of the resolution in the
first fully connected layer outweighs the newly added layers. Confv2FC3 uses more filter kernels
and higher neuron counts.

12

Name Number of parameter

Logistic 69k
FC1 2 949k
FC3 2 982k
FC5 3 015k
Conv1Fc1 168k
Conv2FC2 153k
Conv3FC3 38k
Conv5FC5 709k
Conv2FC3 5 589k

Table 3: Parameter counts for different neural network architectures.

6.2 Results

In this section we evaluate the results based on the final training(train) and development(dev)
errors as well as the in-game performance. We use the classification error mean(E) as the ratio
of wrong classified frames to all frames. The in-game performance is tested by playing 100
rounds and measuring the play-times.

In Figure 10 we show the comparison of the different data-sets. We trained each of of them
for 50 epochs. But final additional analyzes have shown a training of 10 to 20 epochs would
be sufficient. The Human data-sets are harder to train. Most likely this is a result of the
noise introduced by the reaction time. As the actions of the TCV algorithm are completely
deterministic, they could be reproduced well by the CNN. The both data-set achieved the best
in-game performance. The combination of human- and machine-data seams to have a positive
effect. The hyperparameter choice was not optimal for the All data-set, which resulted in a high
training error. The dev-set errors roughly match the results from the in-game evaluation. Based
on the evaluation data we chose the both data-set for further evaluations.

Figure 11 compares different types of preprocessing and network architectures. In general,
using fully connected networks resulted in a poor performance. The constant identical error,
achieved by many different architectures, indicates a matching to some statistic property of the
data-set. This also is supported by the results in Figure 12, where the fully connected networks
performed comparable to random play. The chosen network architectures with 128 neurons
per layer are most likely not ideal. The radStab preprocessing shows the best performance and
generalizes better from the training- to the development-data. The Conf5FC5 network also
performed reasonable well on the configurations with less preprocessing.

A somewhat surprising result is the fact, that the best supervised learning results outperform
the data-sets used for their training. The main factor for this is, that reaction time of the
algorithm is faster than a human player. Also the combination of the human and TCV data-sets,
which allows the algorithms to learn from both, contributes. On the other hand an inspection
of the played games shows, that the algorithm has picked up some of the systematic errors from
the TCV algorithm.

13

(a) Training results, mean(E)

(b) Evaluation results

Figure 10: Comparison of different data-sets.

14

Figure 11: Comparisson of the classification errors (mean(E)) at the end of training.

Figure 12: Playtimes of 100 rounds for different configurations.

15

7 Reinforcement Learning

The previously discussed implementations all have some intrinsic limitations. The TCV imple-
mentation needs to be updated for each situation that can happen in the game. The supervised
implementation is limited by the training data and can outperform the training data only in
terms of reaction time. Therefore the final goal is to implement a self-improving system based
on reinforcement learning.

The foundation of reinforcement learning is a system consisting of an environment and an
actor. The environment gets an action to perform from the actor. It executes the action and
reports back a new state and a reward. The state is used by the agent to choose the next
action. The reward is a feedback to the agent, how well it did, and is used to update its policy.
The policy defines how the actor selects an action based on the current state. The different
reinforcement algorithms now define how to change the policy to increase the expected reward.
Generally we use the total discounted future reward according to Equation 16.

Rn =

N∑
i=0

γi ∗ rn+i (16)

7.1 Algorithms

Textbooks usually start with table based methods. Most common is Q-Learning. Table-based
Q-Learning stores a value for each possible pair of state and action. Sending raw images into
the algorithm would need nrV aluenrP ixels rows and nrActions columns. For us this would be
256192∗120 ∗ 3 values. (This number has 55486 digits). Additionally each state must be visited
multiple times. As a result table-based algorithms are only feasible in situations where the state
space is small. Sometimes the input dimensions can to be reduced in a preprocessing step. In
our case this could be done by threasholding and resizing. Using a binary image with 10x10
pixels results in 210∗10 states which is still not feasible. The other option to reduce the input
space would be to extract some features and train on them. This again brings us in the direction
of initial TCV implementation.

A common way to overcome this limitation is by approximating the Q-Table with a neural
network. In the case of images usually a CNN. This type of network provides the capability
of generalization. It can give us reasonable outputs for states, which it has never seen during
training. This is the approach we use for this work. There are two common algorithms based
on Q-Values, Q-Learing and SARSA, they are very similar in implementation. The difference
is that Q-Learning always assumes using the best next step, while SARSA estimates, based on
the actual step taken. This results in SARSA being less likely to take risks, which we consider
favorable in our case. Additionally SARSA is usually more stable but requires a ε-decay to
converge to the optimal policy.

The main alternative to the value methods like SARSA is policy gradient methods. They
omit the prediction of the value and directly learn which action to perform in which state. A
common implementation of this is the REINFORCE [12] algorithm. A combination of both
groups are Actor Critic algorithms. They are basically policy gradient methods but use a value
estimation to improve their learning.

16

7.2 SARSA with CNN

For this work we decided on using (Deep-)SARSA. It usually offers good performance and
stability, while still being quite simple to implement. Further, being a value method, it is
straightforward to debug. We also tested Deep Q-Learning but we had issues with convergence.
We assume switching to a Dueling Q-Network [15] and playing with the learning rate would
help.

The Deep in Deep-SARSA meaning we use a deep neural network. In our case we have a
CNNs with 9 layers. The CNN architecture is guided by the results of our supervised tests. The
base network architecture can be seen in Table 4 (Section 7.4). We also migrated from Tensorflow
to PyTorch. Tensorflows Keras interface is a very nice abstraction for simpler supervised learning
setups, but feels less helpful for reinforcement learning. PyTorch is usually just a bit more explicit
about things.

SARSA is a acronym for the data needed for training (sn,an,rn,sn+1,an+1). A training
sample consists of, state s and action a for the current timestamp (n) and next timestamp
(n+ 1). Additionally the reward r which is receaved as a result of choosing action an is needed.

SARSA tries to approximate the Q-function (Q∗(sn, an)) which is defined as expected future
reward when the next action is an and then following actions are based on the current policy
(Equation 17). In Equation 19 we now replace the unknown expected value by the outcome of
the current sample and get a sample Qs from the distribution. In Equation 20 we than estimate
the expected future reward using our current Q function. Finally we update our Q(sn, an)
function to minimize the overall error (Equation 21).

Q∗(sn, an)
.
= E(rn|an) + E(R(sn+1)) (17)

Q∗(sn, an) = E(rn|an) + E(

∞∑
i=0

γirn+1+i) (18)

Qs(sn, an) = rn+1 + γE(

∞∑
i=0

γirn+1+i) (19)

Qs(sn, an) = rn+1 + γQ(Sn+1, An+1) (20)

∑
|Qs(sn, an)−Q(sn, an)| → min (21)

In most cases we use a ε-greedy policy. This delivers the best results. We also tested a greedy
policy, which shows similar results. The big disadvantage of the greedy policy is, that it has a
tendency to get stuck. For example it always makes the same move and crashes immediately.
Other actions are never considered and as a result their values are not updated.

We need to choose an action for at least 3 to 5 times (depending on framerate) to see a
meaningful effect. To address this we defined a special ε-greedy policy in Programm 1. It
evaluates every 0.1sec if it should override the greedy policy. With a probability of ε it will start
overriding, with a probability of 0.3 it will stop overriding. Also with a probability of 0.3 it will
update its chosen action.

17

Program 1 Pseudo code of epsilon greedy policy

// Update p o l i c y o v e r r i d e
each 0 .1 sec

i f f o r c e=False :
with p r o b a b i l i t y ε :

f o r c e := True
f o r c e a c t i o n := random act i on

i f f o r c e=True :
with p r o b a b i l i t y 0 . 3 :

f o r c e := Fal se
e l s e :

with p r o b a b i l i t y 0 . 3 :
f o r c e a c t i o n := random act i on

// execute p o l i c y
i f f o r c e=true :

an := f o r c e a c t i o n
e l s e :

an := π(sn)

7.3 Architecture

7.3.1 Player and Trainer

We implemented the algorithm based on two separated programs, the Player and the Trainer.
The architecture is illustrated in Figure 13. The Player plays the game, for each finished round
it saves the recording to the file system. The Trainer reads a set of recordings and updates
the policy based on it. The updated policy is then written to the file system. Because the
only communication of player and trainer is the file system, they can be lunched on different
PCs using a shared network file system. The game does not deliver any rewards, therefore the
Trainer calculates the reward when the recording is incorporated into the replay buffer (Details
in Section 7.3.3). Program 2 and 3 explain the main code path.

Super
Hexagon

ooo

Recording

[•••••••••] [•••••••••]

ooo

Archive and Logs

CNN
CNN

TrainerFile SystemPlayer

Recordings

Model Parameters

Replay Buffer

Assign
Reward

Figure 13: Software architecture used for training.

18

Program 2 Pseudo code of the Player

Star t Game
f o r e v e r :

load newest p o l i c y
play one round (us ing greedy po lecy) // eva lua t i on
save Recording
log r e s u l t
r epeat M times :

play one round (us ing e−greedy po lecy) // t r a i n i n g
save Recording
log r e s u l t

Program 3 Pseudo code of the Trainer

load model
load rep lay b u f f e r
f o r e v e r :

// one epoch
repeat N times :

read Recording
prep roce s s r e co rd ing
c a l c u l a t e reward
add to rep lay b u f f e r

t r a i n CNN on a l l new samples
t r a i n CNN on random old samples
save model f o r p laye r

7.3.2 Preprocessing

The preprocessing is based on the pipeline stages from the non-learning implementation. The
preprocessors used are Gray Figure 4b ,Rad Figure 4c ,RadStab Figure 4f.

7.3.3 Reward

The reward functions consist of two parts. A positive and an negative reward. The negative
reward is given for the last five frames before a collision. It is linearly faded on these frames
(-20, -40, -60, -80, -100). The temporal extension of the reward to five frames should give more
examples of what to avoid.

The positive reward is only given for some tested configurations. For these a distance is
calculated on an ellipsoid according to Figure 14. This distance is then scaled to a range of 0 to
maxReward (typically 3). The tests with just a negative reward are usually labeled Neg. The
tests with negative and positive reward are labeled Full.

m[x, y] = 255max

0, 1−

√
x2

a2
+

(y − width
2)2

b2

 |a = 1, b = 0.2, width = 400 (22)

D = max
∀x,y

(min(img(x, y),m(x, y))) (23)

r = (255−D)
maxReward

255
(24)

19

Figure 14: The distance based reward is calculated using a distance template (red) which is
combined with the thesholed image. The template is defined as an elypsoid.

7.3.4 Replay Buffer

The replay buffer is implemented as a hdf5 6 file. The elements in the buffer are (State, Action,
Reword) and RefFrame. RefFrame is a reference to the frame 0.1sec earlier. For training we
allways use a temporal difference of 0.1sec between the two trained states. This is to over-
come the systems lag, consecutive frames show basically no influence of the action of the direct
predecessor. The actions values for this 0.1sec interval are averaged.

The replay buffer consists of three sub buffers D(Dummy), P(Positive), N(Negative). The
D-buffer contains the first 1.2sec of the game-round. In this part of the game, the playfield is
still mostly empty. The D-buffer only exists to be referenced by other elements. The N-Buffer
contains the last second of each round. This is the interval just before the collision. The P-
buffer contains the mid game, where no collisions happened. Generally we used a limit of 50k
samples for P-Buffer and 150k buffer for N-buffer. These limits keep some balance of positive and
negative samples with focus on the things to improve. Figure 15 shows the size development of
the replay buffer during training. The P-buffer grows with an increasing speed as the algorithm
improves. After about 300 epochs the P-buffer reaches its size limit and only the last 50k frames
are used for training. The number of new samples per epoch also increases with performance
and typically saddles at around 1k-4k samples per epoch.

Technically the replay buffer has no size limit, but only the last N samples are visible during
training. The size limits of the replay buffer could be replaced by weighed sampling of the replay
buffer.

7.4 The Model

The base model (Model1) used for our implementation has 5 convolution layers, 3 fully-connected
hidden-layers and the output-layer. It converts a 192x120x1 tensor into a 3 element output. The
main parameters are shown in Table 4. There are three variations of this model which have the
last 10 actions as a secondary input. In Model2 the last 10 actions are added to the input of
layer fc2 and the last two actions are stacked as additional channels on top of the input of Conf1.
In Model3 the last commands are added to the inputs of layers fc1, fc2, fc3. Model4 adds the
actions to the inputs of layer fc1, fc2. Additionally Model 4 splits layer fc3 and fc4 in a value
and advantage path which are added in the last step.

6https://www.hdfgroup.org/solutions/hdf5

20

https://www.hdfgroup.org/solutions/hdf5

Figure 15: Size development of the replay buffer. The logical sizes are limited to 50k samples
for P-buffer and 150k samples for N-buffer.

Layer Type Channels kernel size/neurons padding

Conf1 Conv2D 5 15 7
Conf11 Conv2D 9 9 2
Conf2 Conv2D 12 7 1
Conf3 Conv2D 15 7 1
Conf4 Conv2D 18 7 1
fc1 Fully Connected - 128 -
fc2 Fully Connected - 64 -
fc3 Fully Connected - 24 -
fc4 Fully Connected - 3 -

Table 4: Default CNN architecture used for our SARSA implementation (Model1). The ac-
tivation function is exponential linear unit(elu) and all convolutional layers are followed by a
MaxPooling.

21

7.5 Evaluation and Results

For the evaluation different configurations were trained. We trained each configuration for at
least 10 hours. The most interesting configurations were trained further, up to 36 hours. An
overview of the most relevant configurations and their key parameters can be seen in Table 5.
Figure 16 shows results in training and evaluation mode. In evaluation-mode ε = 0, in training-
mode ε is according to its configuration. The results can be split into two groups. All the Polar-
Stab configurations, having the radStab preprocessing, performed well. The other preprocessors
in comparison learned very slow. This is highlighted in Figure 17. The greedy configurations
performed better during training and show no significant difference during evaluation. We also
noticed, that smaller than default learning rates are most likely better. High learning rates as
in configuration 9 resulted in a diverging optimization. Configuration 2 shows that using only
negative feedback works too, but has slower improvements. The additional input of the last
commands to the first layer of the CNN (Configuration 11) decreased performance. It was early
stopped in favor of other configurations like 12p,13 which add the last commands only to the
fully connected layers. We also experimented with resetting the state of the Adam optimizer
between epochs (KM=0) but could not detect a significant influence. The best results were
achieved by configuration 13 which was also used for comparison with other algorithms.

id name Model Preprocessing Reward Additional Info

1 Polar-Stab Full Model1 RadStab Full
2 Polar-Stab Neg Model1 RadStab Neg α = 3e− 5 beta = [0.99, 0.999] KM = 1
3 Polar Full Model1 Polar Full
4 Gray Full Model1 Gray Full
5 Gray Neg Model1 Gray Neg
6 Polar-Stab Full Greedy Model1 RadStab Full ε = 0
8 Polar-Stab Full Momentum Model1 RadStab Full KM = 1
9 Polar-Stab Full Fast Model2 RadStab Full α = 0.001 KM = 1

10 Polar-Stab Full Slow Model1 RadStab Full α = 0.00003 beta = [0.99, 0.999] KM = 1
11 Polar-Stab Full Hist Model2 RadStab Full α = 0.00003 beta = [0.99, 0.999] KM = 1

12p Polar-Stab Full Greedy2 Model3 RadStab Full α = 0.00003 beta = [0.99, 0.999] KM = 1

13 Polar-Stab Full optim Model4 RadStab Full
α = 0.00003 beta = [0.99, 0.999]

sizeP = sizeN = 200k KM = 1 ε = decay

Table 5: Configurations used for evaluation. Defaults are learning rate α = 1e− 4, momentum
beta = [0.9, 0.999], size of P-buffer sizeP = 50k, size of N-buffer sizeN = 150k, keep momentum
KM = 0, randomness during training ε = 0.03

22

Figure 16: Playtimes in evaluation mode(ε = 0) and training mode(ε 6= 0). Rolling average over
50 rounds.

Figure 17: Selection of curves from Figure 16. Highlighting the influence of preprocessing.

23

8 Conclusion

We have implemented an artificial player for Super Hexagon using three different methods. We
compared each one against a human reference and analyzed the impact of preprocessing and
other parameters. Now we compare the different algorithms, Table 6 shows the values and
Figure 18 visualizes their distributions.

With 24.4sec the Traditional Computer Vision (TCV) implementation was able to slightly
surpass human performance. The implementation lead to the development of our preprocessing
pipeline from which all other algorithms could benefit. For sure there is still a significant room
for improvement, but driving this approach forward is very labor intensive.

The supervised learning implementation is able to reproduce and even surpass its training
data. This mostly is attributed to the superhuman reaction-times with an additional small boost
from combining the Human- and TCV-data for training. Based on the sophisticated frameworks
this approach was straightforward to implement, this mostly moved the development efforts
towards the evaluation.

The reinforcement learning implementation needs significantly more application specific
tweaking, especially when it comes to systems running at real time. Nevertheless the exist-
ing frameworks support the implementation very well, allowing the developer mostly to focus
on application specific tasks. The reinforcement system significantly outperformed all other
implementations and most likely improves even further when training is continued.

The main benefit of TCV in our perspective is the possibility to reason about its actions. If
this is not necessary, we suggest a learning based approach. A supervised system will quickly
lead to good results if training data in sufficient amount and quality is available. If the best
possible performance is your goal, a reinforcement system is the way to go.

0 20 40 60 80 100 120 140
Playtime in sec

Human

Random

TCV

Supervised

SARSA

Figure 18: Comparison of 100 game-rounds of different approaches.

Mean Std-Dev Median Max

SARSA 46.9 25.6 47.3 134.9
Supervised 30.7 19.2 30.6 79.2
TCV 24.4 15.4 23.5 70.4
Random 2.5 2.7 1.4 15.7
Human 22.9 15.2 19.7 73.9

Table 6: Result comparison of different algorithms. All values are play-times in seconds.

24

References

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. URL:
https://opencv.org/. 5

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. arXiv:arXiv:1606.01540. 1, 2

[3] Danijar Hafner. Deep reinforcement learning from raw pixels in doom. CoRR,
abs/1610.02164, 2016. URL: http://arxiv.org/abs/1610.02164. 1

[4] Todd Hester, Matej Veceŕık, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, An-
drew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, and
Audrunas Gruslys. Learning from demonstrations for real world reinforcement learning.
CoRR, abs/1704.03732, 2017. URL: http://arxiv.org/abs/1704.03732. 1

[5] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski.
Vizdoom: A doom-based AI research platform for visual reinforcement learning. CoRR,
abs/1605.02097, 2016. URL: http://arxiv.org/abs/1605.02097. 1

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
arXiv:1412.6980. 11

[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. CoRR, abs/1602.01783, 2016. URL: http://arxiv.org/abs/
1602.01783. 1

[8] Somnuk Phon-Amnuaisuk. Learning to play pong using policy gradient learning. CoRR,
abs/1807.08452, 2018. URL: http://arxiv.org/abs/1807.08452, arXiv:1807.08452. 1

[9] Deep Reinforcement Learning: Pong from Pixels. URL: http://karpathy.github.io/

2016/05/31/rl/. 1

[10] Building a Powerful DQN in TensorFlow 2.0 (explanation
& tutorial). URL: https://medium.com/analytics-vidhya/

building-a-powerful-dqn-in-tensorflow-2-0-explanation-tutorial-d48ea8f3177a.
1

[11] Simon Ramstedt and Christopher J. Pal. Real-time reinforcement learning. CoRR,
abs/1911.04448, 2019. URL: http://arxiv.org/abs/1911.04448, arXiv:1911.04448. 1

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL: http://incompleteideas.net/book/

the-book-2nd.html. 1, 16

[13] Jaden B. Travnik, Kory W. Mathewson, Richard S. Sutton, and Patrick M. Pilarski. Re-
active reinforcement learning in asynchronous environments. Frontiers in Robotics and AI,
5:79, 2018. URL: https://www.frontiersin.org/article/10.3389/frobt.2018.00079,
doi:10.3389/frobt.2018.00079. 1

[14] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep
reinforcement learning. CoRR, abs/1511.06581, 2015. URL: http://arxiv.org/abs/1511.
06581. 1

[15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. Dueling network architectures for deep reinforcement learning, 2016. arXiv:

1511.06581. 17

25

https://opencv.org/
http://arxiv.org/abs/arXiv:1606.01540
http://arxiv.org/abs/1610.02164
http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1807.08452
http://arxiv.org/abs/1807.08452
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
https://medium.com/analytics-vidhya/building-a-powerful-dqn-in-tensorflow-2-0-explanation-tutorial-d48ea8f3177a
https://medium.com/analytics-vidhya/building-a-powerful-dqn-in-tensorflow-2-0-explanation-tutorial-d48ea8f3177a
http://arxiv.org/abs/1911.04448
http://arxiv.org/abs/1911.04448
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.frontiersin.org/article/10.3389/frobt.2018.00079
http://dx.doi.org/10.3389/frobt.2018.00079
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Acronyms

HSV Hue Saturation Value

CNN Convolutional Neural Network

SARSA State Action Reward State Action

TCV Traditional Computer Vision

SAC Soft Actor Critic

NEAT Neuro Evolution of Augmenting Topologies

API Application Programming Interface

fps frames per second

CEL Cross Entropy Loss

26

	Introduction
	Related Work
	The Game
	Framework
	Wrapping the Game
	Game Logic
	Recording
	Recording Analyzer
	Preprocessing

	Traditional Computer Vision
	Results
	Common Errors

	Supervised Learning
	Evaluation
	Results

	Reinforcement Learning
	Algorithms
	SARSA with CNN
	Architecture
	Player and Trainer
	Preprocessing
	Reward
	Replay Buffer

	The Model
	Evaluation and Results

	Conclusion

