
contact: Christoph Wiesmeier c.wiesmeier@student.tugraz.at

Content Based Video Retrieval

Christoph Wiesmeier

Inst. for Computer Graphics and Vision

Graz University of Technology, Austria

Technical Report
ICG–TR–

Graz, July 28, 2016

mailto:c.wiesmeier@student.tugraz.at

Abstract

As the number of videos available is permanently increasing the management
of video collections becomes more time consuming. Video retrieval can be used
to minimize the amount of manual work to manage these collections. Au-
tomated duplicate detection and assigning external available meta data, like
movie names, to local video collections are two examples. Depending on the
type of video different types of algorithms are used. In our work we focus on
TV-series. We present several algorithms which use time-local descriptors that
are computed at cuts. These local descriptors are common visual descriptors
like the Gist? descriptor and a time based descriptor. For evaluation we built
two small databases containing 100 and 500 full length movies,respectively On
this databases we perform both a duplicate search and video retrieval with dif-
ferent types of video manipulations. The evaluation will show show that the
times between the cuts are sufficient to match videos. By using visual infor-
mation it is possible to add more discriminative power which allows matching
if that video contains only a few cuts.

Keywords: Video Retrieval, Seminar/Projekt

1 Introduction

Video retrieval is the task of searching a database with a video as query. This
can be used to solve different tasks. For example to prevent duplicates in a
collection you can look if the video is already in the database before adding
it. By using en existing database you can search for the name and other meta
data and automatically name and structure videos on your file system. Video
platforms like Youtube1 also use video retrieval to reject upload if there are
known license issues.

Comparing videos directly, e.g. , by their pixel values requires a huge
amount of computational power. To allow a faster comparison we use de-
scriptors. These descriptors can have different properties. The distinct-
ness describes how good the descriptor is in distinguishing different inputs,
Speed(how fast the descriptor can be compared) and size (how many bytes
are required to store it) can also be important. Furthermore, we have pre-
image resistance which tells us if it is possible to find multiple inputs resulting
in the same descriptor. Finally, we have robustness, which tells us how much
an input can be changed while the descriptors still tell us that the movies are
similar. In the context of videos this typically means robust to the following
list.

• Image changes

– Changes in resolution and pixel aspect ratio (anamorphic wide
screen)

– Black bands

– Changes in intensity and contrast

– Blurring and distortion

– TV-Inpaintings (station logo/ advertisements ...)

– Manipulation to overcome license checking, e.g., horizontal flip

• Temporal changes

– Changes in frame rate or dynamic frame rate

– Cropping in time

– Manipulation to overcome license checking, e.g playing video back-
wards

1http://www.youtube.com/

1

http://www.youtube.com/

Fast comparison and small storage can be achieved by cryptographic hash
functions like sha1 and md5. They offer pre-image resistance and great dis-
tinctness. Cryptographic hash functions are used by many modern applica-
tions to sign documents or to identify files and entire file structures in version
control software like git2. But the pre-image resistance required for signing
documents has the disadvantage of absolutely no robustness which makes
them unsuitable for video retrieval. Building a robust algorithm which is able
to distinguish different videos is our main goal. Further we try to provide
a small and fast matchable descriptor. Since we do not provide pre-image
resistance it is possible to make huge changes in the input video without
changing the descriptor. This should only happen if the video is modified
on purpose in a way our algorithm does not detect. There is a similar appli-
cation known as video hashing? which aims on detecting any meaning full
change on the input while still preserving robustness.

Our method uses the idea that cuts are salient points in a video. By as-
signing a local descriptor to each salient point a global description is formed.
The size of the global description is proportional to the number of cuts in
the video. Various local descriptors like time spans between cuts or visual
descriptors can be used. The similarity of the actual videos can now be esti-
mated by the similarity of the global descriptor. An important requirement
for this algorithm is that the videos contain enough cuts. This is the case for
modern video productions as shown in Section ??.

2 Related Work

As video retrieval isn’t a new field of research there are already a lot of
algorithms to use. Not all of them have quite the same goal. Most focus on
finding the same video but others like Revaud et al.? try to find different
videos of the same event like the eruption of a geyser. Furthermore depending
on the application different source video material is used. The majority of
algorithms uses short clips from websites like Youtube3 and have the goal
to handle databases of millions of movies. In contrast, our algorithm uses
TV-movies which offer different properties like hundreds of cuts.

Similar research to video retrieval is done for perceptual audio hashing
like Hamza et al.?. In this field periodicity based algorithms are common.

One algorithm we would like to mention in more detail is Robust Video
Hash Extraction? which we have implemented as a reference. They sample
the video down to a temporal resolution of 64 frames and a spatial resolution

2https://git.wiki.kernel.org
3http://www.youtube.com/

2

https://git.wiki.kernel.org
http://www.youtube.com/

of 32 · 32 pixel. The result is a 32 · 32 · 64 cuboid of intensity values. This
cuboid is then converted to the frequency domain using the discrete cosine
transform (DCT). The lowest 4 non zero frequency terms for each direction
are used to form a 4 · 4 · 4 = 64 value vector. This vector is thresholded by
its median which results in a 64 bit vector with 32 ones and 32 zeros. The
hamming distance of two bit-vectors is used to describe the difference of the
two videos.

Since we use the local binary pattern (LBP) descriptor in an algorithm
we also mention the work of Lifeng et al.? in more detail. They use a
uniform sampling to extract frames from the video. A descriptor based on
local binary patterns is then extracted from each frame. Those patterns are
computed by splitting the image in 3 · 3 areas, and compare their average
intensities. A 8 bit descriptor is computed by those comparisons. Using a w-
shingling? algorithm, additional temporal information is encoded. Thereby,
a 16 bit vector is formed. A histogram of these 16 bit vectors is built to
form the final descriptor. They finally present a method for database search
with time complexity O(log(n)) which makes their algorithm suitable for web
scale video databases.

3 Framework

The goal of our framework is to allow simple testing of our algorithms at
a reasonable computational cost. The framework can be split into input
alteration, descriptor extraction, and database.

The input alteration can modify videos before the are processed by the
descriptor extractor. This process is used during search operations to simu-
late different modifications which are applied to a video. To alter the videos
we use a chain of filters. The filters are applied in realtime on each frame.This
on the fly alteration saves us from previously creating and storing the 1920
videos we currently process during testing.

The descriptor extraction makes use of the same filter chain. It uses spe-
cial filters which add annotations to each frame. Currently we use a difference
calculator and a cut detector before the actual data extraction. This design
allows simple component replacement, e.g., using pixel or histogram based
differences for cut detection. The actual data extraction is implemented as
two filters. One for our cut based algorithms and another for the reference
algorithm. A typical filter chain can be seen in Figure 1.

The results of the descriptor extraction are now stored in a relational
database. Using a relational database allows us storing additional data, like
images of each cut, without loading them during search. Furthermore it

3

provides locking which is required during concurrent execution.
Building a database in our framework means disabling input alteration

and storing all the descriptor in a database file. During search we use different
types of input alteration, extract the descriptors and compare the results
against our database.

Input Alteration Descriptor Extractor

Video
Source

ResizeBlur
Difference
Calculator

Cut
Detector

Cut Data
Collector

SSTBV
Hash

Figure 1: Sample filter chain as used for video search. The filters
(Blur/Resize) are used to simulate a modified source video and are part
of the test system. The difference calculator and the Cut detector adds addi-
tional information. Finally the Cutdata-Collector and SSTBV-hash produce
the video descriptors.

For performance reasons we implemented most of our framework in C++
using OpenCV? and the Qt framework4. The test system is a collection of
python scripts which are manly used to analyze the results. As database
engine we use SQLite?.

4 Shot boundary detection

Shot boundary detection in any situation is a quite complicated task. This
is a result of the large number of different types of boundaries. Common
are hard cuts, fades, and dissolves. Hard cuts have no transition between
to shots. Faded means the video becomes gradually darker until it is black,
or staring from a black image until the full illumination is reached. Dissolve
means that one shot is gradually blend into the other. More details and an
algorithm to detect all these shot boundaries can be found in Shot Boundary
Detection at TRECVID 2007?.

4.1 Algorithm

Fortunately, hard cuts are the most common of all these shot boundaries
and the fades and dissolves are mostly used to separate different scenes.
This allows us to only use hard cuts for our algorithms, particularly because

4http://www.qt-project.org/ (2014)

4

http://www.qt-project.org/

we only need to find the same shot boundaries, in all versions of the movie
but not all of them. This allows us to use significantly simpler and faster
algorithms.

Our algorithm consists of two parts. First, calculating the distance of two
frames, and second, detecting the actual cut. To calculate the distance we
simply use the mean intensity difference on a pixel basis. For this purpose the
image is converted to gray scale and the average of the absolute difference over
all pixels is calculated. One example of such a signal can by seen in Figure 2.
Based on these differences we now have to decide where a cut happened.
Our assumption is that if the inter-frame distance is higher than a threshold,
a cut happened. It was not possible to define a global threshold which is
higher than the difference caused by viewpoint changes but lower than the
difference caused by all cuts. We thus did use a relative threshold based on
the differences before and after. This detector works in most situations but
leads to false positives on still images, if the compression occasionally adds
some noise. To overcome these situations we added an absolute threshold
which is larger than this noise level. The result is the detector in Equation (1).

Figure 2: Average per pixel difference of a TED-Talk (first 5000 frames).
The spikes correspond to cuts.

5

cut[i] =diffs[i] > minRelDiff · diffs[i− 1] &

diffs[i] > minRelDiff · diffs[i + 1] &

diffs[i] > minAbsdiff

(1)

We also tried a histogram based approach for cut detection, but there was
no significant improvement in quality to justify the increase in computing
time. The evaluation of our cut detector will be sown in Section ??.

5 Matching algorithms

We describe a video as a sequence of cuts. The detection of these cuts has
been explained in Section 4. We calculate a descriptor for each of these
cuts and store the sequence of descriptors. The descriptors we use will be
discussed in Sections 5.1 to 5.4.

To match the descriptor sequences we use either the longest common
sub-sequence algorithm? or a slightly modified version we call minimum
distance sub-sequence. The longest common subsequence algorithm tries
find the longest sequence of matching descriptors which is common to both
descriptor sequences. When using the minimum distance sub-sequence we
define a distance function between two cut descriptors and a fixed distance
if a descriptor has to be inserted or removed from the sequence. The lowest
possible distance is our video distance.

When using the longest common sub-sequence we are only interested in
the length of this sequence. By dividing the length of the longest common
sequence by the length of the longer input sequence we get a score from
zero to one. During search we now compare the query video to every video
stored in the database. The video of the database with the highest score is
reported as the result. In our experimental evaluation, this design is used
by the Time Longest Sequence and BP Longest Sequence algorithm. The
GIST minDist Sequence, BP minDist Sequence and the DCT3D minDist Sequence
algorithms use the minimum distance sub-sequence algorithm.

Important to note is that these algorithms calculate optimal solutions for
the given problems and are time consuming. The subsequence algorithms
have quadratic runtime based on l, which is the number of cuts of a movie.
Further we compare a query video against all n movies of our database.
The result is a run time of O(l2 · n). For larger databases we suggest using
heuristic algorithms which may not guarantee the optimal solution but are
a lot faster.

6

5.1 Binary Patterns

For this algorithm we use two single byte Binary Pattern (BP) descriptors,
one before and one after the cut. This descriptor is calculated by converting
the image to gray scale, splitting it in 3 times 3 rectangles, and comparing
their average intensity. This progress in illustrated in Figure 3. The idea of
this descriptor is taken from Lifeng et al.?. The descriptor uses two different
comparison groups. First there are 4 comparison with the center. Second
there are 4 comparison of the corner regions. The idea is that the center
regions have a lower chance to be altered by TV-inpaintings and therefor
could be weighted different. We currently not utilize the different qualities
of the bits.

Figure 3: The one byte BP descriptor as described in Lifeng et al.?

This BP descriptor is used with two different matching algorithms, BP -
Longest Sequence, where only exact matches are accepted and BP minDist -
sequence, where the previous discussed Minimum Distance Subsequence al-
gorithm is used. In this case the distance is defined as the number of different
bits.

5.2 DCT2D

This feature is inspired by our reference algorithm?. The descriptor uses
the lowest frequency terms of the 2 dimensional Discrete Cosine Transform
(DCT) except the terms which contain a zero frequency in either direction.
The values of the DCT are thresholded by their median. This results in a
descriptor which contains an equal number of ones and zeros. We use the
lowest 8 frequencies in both directions, which leads to a 64Bit descriptor
before and after each cut.

7

5.3 GIST

This method is based on the Gist descriptor from Olivia and Torralba?.
It is selected because it is one of very few descriptors actually designed to
describe a hole image. As parameters we use one scale with 4 blocks and 8
orientations per block. Furthermore the images are resized to a fixed aspect
ratio as suggested in the implementations documentation. In our case this
is done by resizing to 320 · 180 pixels without preserving aspect ratio. The
descriptor is used in its gray-scale version. For integration in our framework
we use a Gist implementation in C from LEAR5.

Since the descriptor uses a high dimensional vector of float numbers we
use the sum of squared differences (SSD) to calculate their distance.

5.4 Time

This is the simplest algorithm. It uses time information as a descriptor for
cuts. The basic idea is using the time between two cuts as a descriptor.
But since some OpenCV versions do not provide correct timestamps for the
frames we decided to use frame numbers. To overcome the problem of differ-
ent frame rates we normalize these frame counts. This leads to the descriptor

d[n] =
frame[n]− frame[n− 1]

frame[n + 1]− frame[n]
(2)

where d[n] is the descriptor for the n’th cut and frame[n] is the frame number
of the n’th cut. If two descriptors differ less than 10% we treat them as equal
during the longest common subsequence search. This condition is formalized
in

(da · 1.1 > db)&(db · 1.1 > da)⇒ da == db (3)

where da and db are two cut descriptors calculated according to Equation (2).
To estimate the discriminative power of this descriptor we calculate the

average entropy of a cut descriptor d[n]. Equation (4) calculates the entropy
H of one cut descriptor based on it’s probability to occur. This is in our case
the number of descriptors in the equality range Equation (3) divided by the
number of cuts in the database. The result is about 4.3bit per cut and is
slightly dependent on the data set. An evaluation of the entropy per movie
can be seen in description of the dataset Section ?? Figure ??.

H = −
cuts∑

p · log2p =
cuts∑

p · log2
1

p
=

1

NrCuts
·
cuts∑

log2
NrCuts

MatchingCuts
(4)

5http://lear.inrialpes.fr/software

8

http://lear.inrialpes.fr/software

6 Reference Algorithm

As a reference we use an algorithm proposed in robust video hash extraction
?. In contrast to our algorithm it is not cut based. It has been chosen because
it uses a straight forward approach and was implementable with reasonable
effort.

The algorithm represents the video in form of the low frequency terms
of a three dimensional DCT. Therefore the video is filtered and sub-sampled
in time to 64 frames, then filtered and sub-sampled in space to 32 · 32 pixel.
The resulting video is then transformed by a DCT and the 4 frequency terms
in each direction, which represent the lowest non zero frequencies, are used
to form a 64 dimensional vector. This vector is thresholded by its median
which results in an equal number of ones an zeros. The result is a 64Bit
descriptor for the movie where the number of different bits represents the
distance between two movies.

Our implementation differs slightly from the original algorithm. The
changes are made to allow a reasonable integration into our test system.
The original algorithm uses first a temporal sub-sampling and afterwards
the spatial sub-sampling. We changed this order to reduce the memory
consumption by only storing the low resolution images. Second the temporal
sub-sampling is done by a successive reduction of the frame buffer every time
the buffer reaches 1024 frames. This is a result of not knowing the number of
frames at the beginning and the goal to reduce the memory requirement on
long videos. Both changes should have no significant impact on the retrieval
performance.

7 Experiments

Now we will discuss the experimental evaluation of our algorithms. First, we
will introduce the datasets we built for evaluation and discuss some of there
properties we noticed. Afterwards, we will evaluate the cut detector. Finally
we will test the results in database search and finally in duplicate search.

7.1 Dataset

For the following tests we use two data sets. The data set TED(500) contains
a collection of TED-talks6 which are presentation recordings. We use a ran-
dom selection of 500 videos of the 1303 talks available on Nov/21/2012. The
videos have a typical length of 5 to 20 minutes and are available in 3 different

6http://www.ted.com/

9

http://www.ted.com/

qualities: 480p, standard and light (The light version uses a reduced frame
rate). If not otherwise mentioned we used the light version. Since some of
these talks contain very few and in some cases no cuts at all, we generated
a second data set Stargate(100) from 100 randomly selected Stargate SG1
Episodes. The use of two datasets allows us to analyze the quality on different
types of video material. From each data set we built a database containing
all descriptors of all videos. A comparison of the number of cuts and the time
between cuts can be seen in Figure ?? and Figure ??, respectively. Finally,
we calculated the estimated entropy per movie which could be used by the
Time Longest Sequence algorithm. This is a result of Equation (??) which
calculates the entropy H based on the portability p that the time difference
of to frames fits in the 10% margin. The result can be seen in Figure ??.

H =
cuts∑

p · log2
1

p
(5)

0 50 100 150 200 250 300 350 400 450
Nr Cuts

0

50

100

150

200

250

Nr
 O

cc
ur

re
nc

es

median=82
avg=87

Histogramm, numer of cuts per video

(a) TED(500)

200 300 400 500 600 700 800 900
Nr Cuts

0

5

10

15

20

25

Nr
 O

cc
ur

re
nc

es

median=598
avg=606

Histogramm, numer of cuts per video

(b) Stargate(100)

Figure 4: Histogram which shows the number of cuts per video. Data ex-
tracted using our basic cut detector.

10

0 5 10 15 20 25 30
Time since last cut [s]

0

500

1000

1500

2000

2500

Nr
 C

ut
s

median=6.2
avg=9.08546126899

Histogramm, time between cuts

(a) TED(500)

0 5 10 15 20 25 30
Time since last cut [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Nr
 C

ut
s

median=2.76
avg=4.16820006364

Histogramm, time between cuts

(b) Stargate(100)

Figure 5: Histogram which shows the distances between cuts over all videos
of the data set. Data extracted using our basic cut detector.

0 200 400 600 800 1000 1200 1400 1600 1800
Infromation [Bit]

0

20

40

60

80

100

120

140

160

180

Nr
 M

ov
ie

s

median=309.527533746
avg=336.115851209

TED Histogramm, Information per movie

(a) TED(500)

1000 1500 2000 2500 3000 3500 4000
Infromation [Bit]

0

5

10

15

20

25

30

Nr
 M

ov
ie

s

median=2576.54699709
avg=2593.87445134

Stargate Histogramm, Information per movie

(b) Stargate(100)

Figure 6: Histogram which shows the entropy per movie in bits.

11

7.2 Cut detector evaluation

To create test data for verification of the cut detection algorithm we imple-
mented a tool for marking these frames in the movie. The tool opens the
directory of images and allows seeking forward and backwards in the video
and has some features for jumping between the marked cut frames. It dis-
plays two consecutive frames. If there is a cut between the left and the right
image, this can be stored by a simple key press. Afterwards this information
can be exported. A screenshot of the tool can be seen in Figure ??.

Figure 7: Screenshot of the tool which was built to annotate the cuts in a
movie.

For evaluation, a selection of 10 TED-Talk’s7 was manually annotated.
The thresholds minRelDiff and minAbsdiff from Equation (1) are optimized
using previously annotated videos. During this optimization we use the score
function

(truepositives− falsepositives)/nrAnotatedCuts. (6)

This function assumes that a false positive detection is as bad as a missed cut.
The result is a score where 1 is the perfect result. The lower limit depends
on the average number of frames between cuts in the dataset, but basically
every negative sore represents a quite bad result. The results of changing the
thresholds can be seen in Figure ??. The threshold minAbsdiff = 8.10 and
minRelDiff = 1.81 delivered the best results. Since the too low thresholds
have greater impact on the quality than the too high ones we decided to use
minAbsdiff = 10 and minRelDiff = 2. Using this thresholds we detect 660

7http://www.ted.com/ (2012)

12

http://www.ted.com/

(97.2%) of 679 annotated cuts and 64 false positives of remaining 2147667
frames which are theoretical cut positions.

0 5 10 15 20 25 30 35 40
absolute threshold

0

2

4

6

8

10

re
la

tiv
e

th
re

sh
ol

d

0.000

0.096

0.192

0.288

0.384

0.480

0.576

0.672

0.768

0.864

Figure 8: Variation of the parameters of the cut detector absolute-/relative-
threshold on the horizontal/vertical axis. The color encodes the average of
Equation (??) over 10 annotated videos. The maximum is minAbsdiff =
8.10 and minRelDiff = 1.81 which results in score of 9.29.

The described algorithm works good for the original videos. But the
assumption that a cut can only have one frame leads to problems when
using a movie which is captured from a screen. The problem is the missing
synchronization between the monitor and the shutter of the camera. One
exemplary result is illustrated in Figure ??. This is basically a very short
dissolve which is not covered by our algorithm.

7.3 Video Manipulations

To test the descriptors we have to artificially manipulate the videos to get
query videos. These manipulations are described below.

Image Scaling: in this case we change the resolution of the video to the
given resolution in pixel. If only one value is given this means we resize to a
quadratic image without preserving aspect ratio.

13

(a) First frame (b) Cut frame (c) Next Frame

Figure 9: These three frames illustrates the result when capturing the video
from the screen and synchronization mismatches. (Ted talk Jane McGonigal)

Random frame drop: In this scenario we use a random number generator
to decide for each frame whether to drop it or not. A drop probability of 0.1
means that 10% of the frames are removed on average. This simulates the
impact of temporal re-sampling if the frame rate changes.

Flip: Flip mirrors the image along the x-,y-, or both-Axes. This is some-
times used to overcome license checking.

Black water mark: Here a black rectangle in the upper left corner is
added. The parameter in this case is the relative side length of the rectangle
compared to the image with/height. This operation is used to simulate TV-
in-paintings as well as black stripes which are used to change the aspect
ratio.

Crop Front: cuts away the first part of the movie. A value of 0.1 means the
first 10% of the movie are cutted away. This stands for every manipulation
where trailers, scenes or the production information (end of the movie) are
cut away.

Gaussian filtering: Blurs the movie with the given standard deviation
in pixel. Simulates all sorts of operation which reduce image quality, like
compression artifacts of blur when capturing a movie with a camcorder.

7.4 Retrieval Results

In this test we calculate the number of correct retrievals for different modifi-
cations of the video. For this test 20 Videos are selected from each data set,
TED(500) and Stargate(100), and the robustness is analyzed.

First, we test the impact of a change in resolution as can be seen in
Figure ??. It can be seen that for reasonable resolutions larger than 50 ·50px
there is no significant impact on the results.

Next, we test the results when dropping frames from the movie. The re-
sults in Figure ?? show a large impact on the Time Longest Sequence algo-

14

rithm. This is not a real surprise since removing frames changes the temporal
information, which is the foundation of the algorithm. More interesting is
the reduced retrieval rate of the other algorithms. Because algorithms using
min distance matching are loosing quality we expected more impact on cut
detection than on visual features. Finally it should be considered that the
huge frame drops of up to 90% are not common. Common values are more
likely in the range of 4% e.g. as a result of converting 25 to 24 fps.

Now we take a look at what happens if we flip the image, see Figure ??.
Obviously this has no impact on the Time Longest Sequence algorithm which
is invariant to this type of transformation. The really interesting algorithm
is GIST minDist Sequence which looses quality as can be seen on the TED
data set but still works good enough to receive perfect score on the Stargate
data set. This means that the left and the right half of the image are usually
visually similar for the gist descriptor. This does not mean similar pixel
values but maybe similar texture. For instance, if a scene is taken in the
forest, the background is quite similar on both sides.

In Figure ??, we see the results of our black watermark test. It’s ma-
nipulation has a large impact on the BP longest Sequence algorithms. A
watermark size of 1/3 = 0.3̇ already forces two bits to fixed values. If we
assume a equal distribution of all descriptor values this means 75% of the
descriptors are changed. The BP longest Sequence matching allows only ex-
act matches and therefore only 25% of the cuts remain for comparison. In
this case the BP minDist Sequence has a big advantage. Since it can also
match similar descriptors it is less sensitive to this sort of manipulation. The
Gist minDist Sequence algorithm is also sensitive to this type of modifica-
tion. In this case we expect large changes on only a part of the descriptor
values. The comparison using sum of squared differences can cause a high
difference as a result of a few large changes. In this particular case a matching
using the sum of absolute differences would be preferable.

One of the most important tests is the truncation of the beginning of
the video. It is very common to remove trailers or credits from a movie. In
this case the reference algorithm STTBV has the biggest trouble, as can be
seen in Figure ??. This lies in the nature of the algorithm which can not
match parts of a movie. The other algorithms are basically influenced by the
reduced number of cuts which can be used for matching. Nevertheless, every
cut that is lost by the truncation is treated as a mismatching descriptor. The
negative impact of this effect could be decreased by reducing the mismatch
penalty on some of the algorithms.

Finally, in Figure ?? we test the impact of Gaussian filtering. Here we ba-
sically find two effects. First, the filtering has an impact on the cut detector,
which leads to the quality loss of the Time longest Sequence, BP longest -

15

Sequcence and BP minDist Sequcence algorithms on the TED dataset. The
second effect is filtering away higher frequencies used by the GIST, and
DCT2D descriptors.

0 50 100 150 200 250 300 350 400
Video Resolution

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Image scaling

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

0 50 100 150 200 250 300 350 400
Video Resolution

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Image scaling

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(b) Stargate(100)

Figure 10: Number of correct retrievals over the resolution of the video.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Drop Probability

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Random frame drop

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Drop Probability

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Random frame drop

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(b) Stargate(100)

Figure 11: Number of correct retrievals over the drop probability.

16

BOTH NONE HORIZONTAL VERTICAL0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Flip

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

BOTH NONE HORIZONTAL VERTICAL0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Flip

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(b) Stargate(100)

Figure 12: Number of correct retrievals when the video is flipped horizon-
tal,vertical, or both

0.0 0.1 0.2 0.3 0.4 0.5
Relative size of the watermark

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Black watermark

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

0.0 0.1 0.2 0.3 0.4 0.5
Relative size of the watermark

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Black watermark

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100
%

(b) Stargate(100)

Figure 13: Number of correct retrievals over the size of the watermark where
0.5 means a side length of watermark is 0.5 times the image width/height

17

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Part of the video truncated away

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Truncate front

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Part of the video truncated away

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Truncate front

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(b) Stargate(100)

Figure 14: Number of correct retrievals over the length of the video cropped
away at the front (0− 70%).

0 5 10 15 20 25 30
Standard deviation [pixel]

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Gauß filtering

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(a) TED(500)

0 5 10 15 20 25 30
Standard deviation [pixel]

0

5

10

15

20

Nr
 c

or
re

ct
 c

la
ss

ifi
ed

 v
id

eo
s

Gauß filtering

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

0

20

40

60

80

100

%

(b) Stargate(100)

Figure 15: Number of correct retrievals over standard deviation of the Gauss
Kernel.

18

7.5 Duplicate Search Results

In this experiment we simulate the task of finding duplicate in a video
database. For both our TED(500) and Stargate(100) dataset, we form a
query set based on 50 videos which are included in our dataset, and 50 which
are not. The videos which are not in the dataset are taken from the cor-
responding sources (TED, Stargate episodes). These 100 query videos are
now searched in the same databases as in the previous task. Because we
also would like to find slightly modified duplicates we again filter the query
videos. We use 10% crop front, resize to 200 · 150px and a black watermark
of 0.1 side length. We now use the quality level returned by the search tool
to decide whether the movie is in the database or not. By changing the
threshold of the classification we get the Receiver Operating Characteristic
(ROC). Our results can be seen in Figure ??. The true positives represent
the movies which are correctly classified to be in the database. The false
positives are movies which are classified to be in the database but actually
are not. Therefore, if a curve reaches the upper left corner, we have per-
fect results. The worst result is the diagonal from lower left to the upper
right corner which could be reached by simple guessing. Now the curves show
that the Time Longest Sequence algorithm performs poorly on the TED(500)
data set and is only a little bit better than guessing. Whereas all cut based
algorithms were able to perfectly classify the Stargate(100) data set. Our
reference algorithm (STTBV) has similar results on both data sets because
it is not affected by the different number of cuts.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

ROC

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

(a) TED(500)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

ROC

Time_longest
STTBV
BP_longest
BP_minDist
DCT2D_minDist
GIST_minDist

(b) Stargate(100)

Figure 16: Receiver operating characteristic for both data sets

19

8 Conclusion

Our algorithms require videos with enough cuts. They do not perform very
well on the TED-Data set. But on modern TV-productions, for which they
are designed, they work fine. Furthermore our algorithms are very robust
against cropping in time because of the longest common sub-sequence match-
ing. In some situation the robustness has to be limited because detecting
the half of a movie as a duplicate is not always desired. Matching using
the GIST descriptor is a quite interesting option if the detection of flipped
videos is desired. In our opinion the best version is LBP longest Sequence,
since it produces good results, while having the smallest (16Bit) descriptor.
Time Longest Sequence is also interesting because it is very robust to image
manipulations. But the low information of a about 4.3 bit per cut results in
the requirement of many cuts and seams to be not ideal for faster matching
algorithms which are required for larger databases.

An important thing to note is that for all tested methods it is easy to
create a movie which results in the same hash. Especially, the Time Longest -
Sequence algorithm can be fooled by replacing the whole video content only
preserving the cut’s. To summarize, cut based video retrieval works good
but not on any video material.

9 Future work

To use the algorithms in real world applications the matching speed is the
most important point of improvement. Therefore, our simple brute-force
matcher has to be replaced. We suggest matching the cut descriptors directly
against a fast data structure and only test the actual sequence on the best
candidates.

In our algorithms we use cuts as salient points in movies. Using other
prominent points like regions with minimal motion could lead to similar
results but without requiring the video to contain cuts. This could allow a
larger range of applications.

Finally it would be interesting if a cut detector could work only on
metadata of compressed video files. This metadata could be the number
of bytes the video codec requires to represent a frame. If this is possible the
Time longest Sequence algorithm could be used without decoding the video.
This would result in a huge speedup of the descriptor extraction.

20

	Introduction
	Related Work
	Framework
	Shot boundary detection
	Algorithm

	Matching algorithms
	Binary Patterns
	DCT2D
	GIST
	Time

	Reference Algorithm

